連續(xù)纖維復合材料具有密度低,強度高等優(yōu)點,因而成為國內外航天器結構的主要材料。其傳統(tǒng)的制備工藝復雜并且成本較高,同時缺乏設計靈活性,限制了最終產(chǎn)品的結構和性能。來自美國特拉華大學的研究團隊開發(fā)了一種動態(tài)毛細管驅動的3D打印技術,稱為局部面內輔助加熱3D打印(LITA),復合材料中纖維體積分數(shù)為58%,機械強度和模量分別達到了810MPa和108GPa.
在成功實現(xiàn)3D打印自行車商業(yè)化的幾個步驟之后,Superstrata和Arevo現(xiàn)在通過Superstrata網(wǎng)站在線銷售3D打印碳纖維自行車和電動自行車??蛻艨梢栽L問在線商店,并購買使用Arevo獨特技術3D打印的個性化碳纖維自行車。這一發(fā)展對增材制造(AM)以及整個碳纖維3D打印具有重大意義。
劍橋大學的研究人員開發(fā)了一種3D打印微型透明電子纖維的方法,用于新一代傳感器。這種纖維比人的頭發(fā)細100倍,可用于制造能夠聞,聽和觸摸的設備。結果發(fā)表在《科學進展》雜志上。
哈佛大學工程與應用科學學院(SEAS)的研究人員已經(jīng)開發(fā)出一種3D打印材料,該材料可以預先編程為具有可逆的形狀記憶功能。哈佛團隊的新型長絲由兩條角蛋白鏈組成,這些角蛋白鏈排列成扭曲在一起的彈簧狀結構。一旦組合成“線圈”,該材料就可以改變?yōu)槿魏涡螤睿缓笠浴靶螤钣洃浶被謴推湓夹螤睢?
俄亥俄州凱斯西儲大學(CWRU)的研究人員與美國陸軍研究實驗室合作制造了一種新型的輕質高性能聚合物,該聚合物可能在防護系統(tǒng)和武器(如頭盔和其他耐沖擊性)中具有潛在應用。
謝菲爾德大學高級制造研究中心(AMRC)的研究人員已經(jīng)使用3D打印來協(xié)助航空航天制造商空中客車公司的大規(guī)模制造項目。
在過去的幾年中,用于增材制造的復合材料的開發(fā)進展加快了,在桌面和工業(yè)增材制造方面的研究和創(chuàng)新都在不斷增長,其中包括使用復合材料的短切和連續(xù)纖維技術,碳纖維或納米管或最常用于玻璃纖維的加強。
AREVO是一家致力于直接數(shù)字增材制造復合材料的硅谷公司,已與總部位于加利福尼亞州的新興初創(chuàng)公司Superstrata合作,為即將到來的電動自行車3D打印完全統(tǒng)一的碳纖維復合材料車架。
Arris Composites通過其專有的Additive Molding? 制造技術,將增材制造工藝與模具工藝相結合,實現(xiàn)了高強度和輕量化復合零件的批量生產(chǎn)。這種新工藝以與塑料成型產(chǎn)品相同的速度生產(chǎn)高級碳纖維材料。
EOS公司的Additive Minds及業(yè)務發(fā)展總監(jiān)Thomas Weitlaner表示。"在EOS,我們每天都在努力讓工業(yè)3D打印成為可持續(xù)的主流制造工藝。3D打印尖端板是另一個很好的例子,快速成型制造如何為玻璃纖維行業(yè)帶來真正的商業(yè)價值和創(chuàng)新。此外,我們還看到了更多有前景的應用,可以進一步提高玻璃纖維生產(chǎn)過程的效率。這種創(chuàng)新應用與數(shù)字化工廠中的快速成型制造的設置相結合,將帶來巨大的創(chuàng)新潛力。"